Showing posts with label Science - Asteroid Collisions - Options for action. Show all posts
Showing posts with label Science - Asteroid Collisions - Options for action. Show all posts

Tuesday, 4 February 2025

Asteroid 2024/YR4 - a near earth miss but later possible collision ?

Astronomers have spied an asteroid that may be heading for Earth. Here’s what we know so far

Artist’s impression of an asteroid with Earth in the background. Buradaki / Shutterstock
Jonti Horner, University of Southern Queensland

On 27 December last year, astronomers using the ATLAS survey telescope in Chile discovered a small asteroid moving away from Earth. Follow up observations have revealed that the asteroid, 2024 YR4, is on a path that might lead to a collision with our planet on December 22 2032.

In other words, the newly-discovered space rock poses a significant impact threat to our planet.

It sounds like something from a bad Hollywood movie. But in reality, there’s no need to panic – this is just another day living on a target in a celestial shooting gallery.

So what’s the story? What do we know about 2024 YR4? And what would happen if it did collide with Earth?

A target in the celestial shooting gallery

As Earth moves around the Sun, it is continually encountering dust and debris that dates back to the birth of the Solar system. The system is littered with such debris, and the meteors and fireballs seen every night are evidence of just how polluted our local neighbourhood is.

But most of the debris is far too small to cause problems to life on Earth. There is far more tiny debris out there than larger chunks – so impacts from objects that could imperil life on Earth’s surface are much less frequent.

The most famous impact came some 66 million years ago. A giant rock from space, at least 10 kilometres in diameter, crashed into Earth – causing a mass extinction that wiped out something like 75% of all species on Earth.

Impacts that large are, fortunately, very rare events. Current estimates suggest that objects like the one which killed the dinosaurs only hit Earth every 50 million years or so. Smaller impacts, though, are more common.

On June 30 1908, there was a vast explosion in a sparsely populated part of Siberia. When explorers later reached the location of the explosion, they found an astonishing site: a forest levelled, with all the trees fallen in the same direction. As they moved around, the direction of the fallen trees changed – all pointing inwards towards the epicentre of the explosion.

Old photo of flattened trees in a forest.
The Tunguska event flattened trees over an area of around 2,200 square kilometres. Leonid Kulik / Wikimedia

In total, the Tunguska event levelled an area of almost 2,200 square kilometres – roughly equivalent to the area of greater Sydney. Fortunately, that forest was extremely remote. While plants and animals were killed in the blast zone, it is thought that, at most, only three people perished.

Estimates vary of how frequent such large collisions should be. Some argue that Earth should experience a similar impact, on average, once per century. Others suggest such collisions might only happen every 10,000 years or so. The truth is we don’t know – but that’s part of the fun of science.

More recently, a smaller impact created global excitement. On 15 February 2013, a small asteroid (likely about 18 metres in diameter) detonated near the Russian city of Chelyabinsk.

The explosion, about 30 kilometres above the Earth’s surface, generated a powerful shock-wave and extremely bright flash of light. Buildings were damaged, windows smashed, and almost 1,500 people were injured – although there were no fatalities.

It served as a reminder, however, that Earth will be hit again. It’s only a question of when.

Which brings us to our latest contender – asteroid 2024 YR4.

The 1-in-77 chance of collision to watch

2024 YR4 has been under close observation by astronomers for a little over a month. It was discovered just a few days after making a relatively close approach to our planet, and it is now receding into the dark depths of the Solar System. By April, it will be lost to even the world’s largest telescopes.

The observations carried out over the past month have allowed astronomers to extrapolate the asteroid’s motion forward over time, working out its orbit around the Sun. As a result, it has become clear that, on December 22 2032, it will pass very close to our planet – and may even collide with us.

A map of Earth showing a red streak stretching from Central America to Southeast Asia.
The area at risk of a strike, based on current (highly uncertain) data. Daniel Bamberger / Wikimedia, CC BY-SA

At present, our best models of the asteroid’s motion have an uncertainty of around 100,000 kilometres in its position at the time it would be closest to Earth. At around 12,000 kilometres in diameter, our planet falls inside that region of uncertainty.

Calculations suggest there is currently around a 1-in-77 chance that the asteroid will crash into our planet at that time. Of course, that means there is still a 76-in-77 chance it will miss us.

When will we know for sure?

With every new observation of 2024 YR4, astronomers’ knowledge of its orbit improves slightly – which is why the collision likelihoods you might see quoted online keep changing. We’ll be able to follow the asteroid as it recedes from Earth for another couple of months, by which time we’ll have a better idea of exactly where it will be on that fateful day in December 2032.

But it is unlikely we’ll be able to say for sure whether we’re in the clear at that point.

Video showing a faint dot in the middle of a background of moving stars
Recent observations of 2024 YR4 – the faint unmoving dot in the centre of the image. ESO, CC BY

Fortunately, the asteroid will make another close approach to the Earth in December 2028 – passing around 8 million kilometres from our planet. Astronomers will be ready to perform a wide raft of observations that will help us to understand the size and shape of the asteroid, as well as giving an incredibly accurate overview of where it will be in 2032.

At the end of that encounter, we will know for sure whether there will be a collision in 2032. And if there is to be a collision that year, we’ll be able to predict where on Earth that collision will be – likely to a precision of a few tens of kilometres.

How big would the impact be?

At the moment, we don’t know the exact size of 2024 YR4. Even through Earth’s largest telescopes, it is just a single tiny speck in the sky. So we have to estimate its size based on its brightness. Depending on how reflective the asteroid is, current estimates place it as being somewhere between 40 and 100 metres across.

What does that mean for a potential impact? Well, it would depend on exactly what the asteroid is made of.

The most likely scenario is that the asteroid is a rocky pile of rubble. If that turns out to be the case, then the impact would be very similar to the Tunguska event in 1908.

The asteroid would detonate in the atmosphere, with a shockwave blasting Earth’s surface as a result. The Tunguska impact was a “city killer” type event, levelling forest across a city-sized patch of land.

Satellite photo of a large rocky crater.
Meteor Crater in Arizona is believed to have been created by a 50m metallic meteorite impact around 50,000 years ago. NASA Earth Observatory / Wikimedia

A less likely possibility is that the asteroid is made of metal. Based on its orbit around the Sun, this seems unlikely – but we can’t rule it out.

In that case, the asteroid would make it through the atmosphere intact, and crash into Earth’s surface. If it hit on the land, it would carve out a new impact crater, probably more than a kilometre across and a couple of hundred metres deep – something similar to Meteor Crater in Arizona.

Again, this would be quite spectacular for the region around the impact – but that would be about it.

Living in a remarkable time

This all sounds like doom and gloom. After all, we know that the Earth will be hit again – either by 2024 YR4 or something else. But there’s a real positive to take out of all this.

There has been life on Earth for more than 3 billion years. In all that time, impacts have come along and caused destruction and devastation many times.

But there has never been a species, to our knowledge, that understood the risk, could detect potential threats in advance, and even do something about the threat. Until now.

In just the past few years, we have discovered 11 asteroids before they hit our planet. In each case, we have predicted where they would hit, and watched the results.

We have also, in recent years, demonstrated a growing capacity to deflect potentially threatening asteroids. NASA’s DART mission (the Double Asteroid Redirection Test) was an astounding success.

For the first time in more than 3 billion years of life on Earth, we can do something about the risk posed by rocks from space. So don’t panic! But instead, sit back and watch the show.The Conversation

Jonti Horner, Professor (Astrophysics), University of Southern Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tuesday, 13 August 2024

Asteroids and the threat to Earth

 

NASA just shut down a planetary defence mission that tracks asteroids. Now what?

Artist’s impression of NEOWISE spacecraft. NASA/Caltech-JPL
Steven Tingay, Curtin University

Launched in 2011, NASA’s NEOWISE mission operated in Earth’s orbit until late last week. It detected more than 3,000 near-Earth objects or NEOs – asteroids or comets whose orbits can bring them close to Earth, even with the possibility of a collision. NEOWISE was shut down on August 8.

Surveying the population of NEOs is central to the emerging concept of planetary defence. That is, understanding and mitigating the risk of collision from asteroids large enough to do significant damage to Earth.

NEOWISE has made fundamental contributions to establishing the knowledge base for planetary defence, with more than 200 of the 3,000 objects it studied not known to us previously.

Now at mission end, and commanded by NASA to shut itself down, NEOWISE will re-enter Earth’s atmosphere before the end of this year. Where does that leave us with defending our planet?

All Known Asteroids in the Solar System (1999–2018)

From astrophysics to planetary defence

NEOWISE started life as a different mission, simply called WISE (Wide-field Infrared Survey Explorer). It was designed to study the infrared radiation from distant galaxies in the universe.

Infrared means “beyond red” – infrared light sits just past the red end of the spectrum of colours humans can see. We know infrared radiation better as the heat from the Sun, for example, or from a radiator keeping us warm in winter.

Infrared light is just outside the part of the spectrum that the human eye can see. brgfx/Shutterstock

When the coolant on the WISE mission ran out and these sensitive observations of galaxies couldn’t be carried out any more, NASA granted a mission extension under the NEOWISE name. They realised the telescope system was still sensitive enough to detect asteroids and comets that come close to Earth and the Sun, thereby having a very strong infrared signal.

NASA has an extraordinary history of squeezing extra life out of missions that reach completion. In this case, NEOWISE represented an entire second life, in an entirely different area of research.

How will we defend Earth now?

As well as the discovery and study of thousands of NEOs, NEOWISE established the foundation of knowledge that has informed a new, dedicated planetary defence mission. NASA’s NEO Surveyor will be launched in 2027.

NEO Surveyor’s goal is to discover approximately two thirds of all NEOs larger than 140 metres in diameter, over a five year baseline survey. This is a big step toward fulfilling the mandate United States Congress has provided to NASA: to discover 90% of all NEOs in this size range.

If they hit Earth, asteroids of this size could cause mass casualties if the impact were over a large metropolitan region.

You might think this poses a bit of a risk – shutting down NEOWISE three years before launching NEO Surveyor. What happens if one of these big asteroids comes our way in the next few years?

The risks are very small, as estimates show asteroids 140 metres in diameter impact Earth only approximately every 20,000 years. So, we would have to be extremely unlucky to have one in any given three-year period, especially impacting a place that would cause a large amount of damage. Only around 3% of Earth’s surface is occupied by urban areas.

NASA doesn’t really have much of a choice with the end of NEOWISE. The Sun’s 11-year activity cycle is picking up and causing Earth’s upper atmosphere, the ionosphere, to thicken. NEOWISE is flying through this ionosphere and can’t raise its orbit, so the ionosphere is inevitably dragging NEOWISE back to Earth.

NEO Surveyor started construction in 2023, so a 2027 launch is pretty impressively rapid, which is minimising the gap between NEOWISE and NEO Surveyor.

NEOWISE is scheduled to enter Earth’s atmosphere before the end of the year, but we don’t know precisely when.

Weighing almost 700kg, some of NEOWISE itself is likely to impact the surface of Earth. Hopefully it stays away from populated areas in the process – some recent re-entry events have resulted in space debris falling reasonably close to populated areas.

An asteroid is coming! What next?

Knowing about an asteroid on a collision course with Earth is one thing. Doing something about it is another thing altogether.

Huge steps toward planetary defence occurred two years ago, when the DART mission flew to an asteroid, impacted it, and changed its trajectory. This demonstrated it’s possible to change the course of asteroids, which could be used in the future to protect Earth from a collision.

Predicting potential Earth impacts as far as possible in advance, years preferably, gives the DART-style technology approach a chance.

The pioneering work of NEOWISE, and the upcoming comprehensive observations of NEO Surveyor, will place an enormous amount of information in our scientific bank, which will never go out of date and will be the basis for planetary defence for perhaps hundreds of years into the future.The Conversation

Steven Tingay, John Curtin Distinguished Professor (Radio Astronomy), Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Saturday, 1 June 2013

Eyes in Space - Canada's sentinel in the sky

Canada's NEOSSat
The surprise explosion of a meteor over Russia on 15th February this year, again served as a reminder of the vulnerability of the planet and its' inhabitants to contact with near-earth objects. The meteor was undetected and estimated to be approx 17 metres wide delivering a 470-kiloton blast with a shock wave that damaged 3,000 buildings and injured over 1,500 people in the Chelyabinsk region of Russia.

Canada has added to the relatively small number of assets available for space monitoring with the launch on 25 February 2013 of the Near-Earth Object Surveillance Satellite (NEOSSat). The suitcase-sized NEOSSat orbits approximately 800 kilometres above the Earth, searching for near-Earth asteroids that are difficult to see using ground-based optical telescopes. NEOSSat is not limited by the day-night cycle but operates round the clock. It circles the globe every 100 minutes, scanning space near the Sun to pinpoint asteroids that have proximity to the Earth. Despite the additional surveillance there remains a significant number of unseen objects as shown below. 

Size in metres
Unknown %
1,000 upwards
7%
150-999
67%
40-149
99%

Saturday, 20 October 2012

Asteroid collisions - size doesn't matter after all


The idea that asteroid collisions with Earth pose any more a direct threat than science fiction films from Hollywood would portray ('Deep Impact' ) is a common belief not readily shared by many astronomers. This conventional and common understanding is grounded in a perception of a giant asteroid hurtling to earth in an event similar to the extinction of the dinosaurs. In reality, much smaller and more readily Near Earth Objects (NEO) which traverse similar orbits can, in fact, do extraordinary damage without actually striking the planet.

This was demonstrated all too effectively by the Tunguska event where a very powerful explosion occurred near the Podkamennaya Tunguska River in what is now Krasnoyarsk Krai, Russia, in the early morning on June 30,1908. It is estimated the asteroid,measuring 70 meters in diameter entered Earth's atmosphere travelling at a speed of approx 33,500 miles per hour and during its rapid descent, the space object heated the air surrounding it to 44,500 degrees Fahrenheit. At 7:17 a.m. (local Siberia time), at a height of about 28,000 feet, the combination of pressure and heat caused the asteroid to fragment and explode, producing a fireball and releasing energy equivalent to about 185 Hiroshima atomic bombs (NASA). 2,000 square kilometers of forest was destroyed. The above ground explosion is in fact referred to as an ‘air burst’ and constitutes the more likely threat to the Earth from asteroids. The Tunguska asteroid is now considered to have been much smaller than first estimates and was probably 30-50 meters in diameter. Measurement of sizes of asteroids suggests that even relatively small objects with the correct mass, trajectory and speed would be able to create a downward directed blast from an air burst with devastating results.The images in this post show the effects of the 1908 blast, many years after it occurred.

Saturday, 26 September 2009

Scanning the Heavens

The recent exercise in December 2008 by the US Air Force to assess the ability to cope with a collision with a Near Earth Object again highlighted how limited is the Earth's capability to detect or prevent such an event taking place. Recently however a Near Earth Object did indeed come into contact with the Earth in October 2008. Designated 2008 TC3 this car sized object exploded over the Sudan but was only spotted by a telescope (the Catalina Sky Survey) with 20 hours notice and at a distance of 500,000 kilometres from our planet. Although the likelihood of a catastrophic asteroid collision is extremely rare, the potential for a strike from a smaller but still destructive near earth body has much greater plausibility.

This situation again raises the need for a greater overall surveillance of the space around Earth and in relation to the Earth's orbit around the Sun. The proposal to increase surveillance through the Panoramic Survey telescope and Rapid Response System (Pan-STARRS) as well as the proposed Large Synoptic Survey Telescope in Chile (providing the project is completed by 2015) will complement the existing monitoring programs. The next question is what action to take if a large body is located on a trajectory to Earth.

Monday, 30 March 2009

Asteroids and the threat to Earth


The question of what action to take when there is the possibility of an asteroid collision with the Earth periodically surfaces from time to time in science and astronomy circles. With impact craters clearly visible on most continents (and most recently discovered in the Yukatan Peninsula in the Gulf of Mexico) and the theory that an asteroid strike led to the demise of the dinosaur age (at the end of the Cretaceous period), this matter is one which won't disappear. The options of how to prevent a collision are not numerous but in practical terms only a handful have any chance of success. Asteroid Ida (pictured) is 35 klms in length and is located in the asteroid belt and does not cross Earth's orbit but represents the size and scale of many of these bodies floating in relatively nearby space.
One option often canvassed is to actually destroy an asteroid through the detonation of a nuclear device below the surface however the most obvious pitfall is without knowing precisely the composition and density of the material, the only result may be to splinter the asteroid and create additional possible impacts on the Earth. More favourably considered are strategies of 'nudging' an asteroid away using nuclear explosions in near proximity or alternatively a concentrated range of laser beams using solar power from reflected rays of the sun with the same effect.
Whatever the possible solutions may be, the principal concern is to be able to actually detect an asteroid before it's too close. In that respect space surveillance programs have fallen on hard times and its more luck than intention when an asteroid is located travelling nearby.